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Simple dimensional arguments are used in establishing three different regimes of particle time scale,
where explicit expression for particle Reynolds number and Stokes number are obtained as a function
of nondimensional particle size ðd=gÞ and density ratio. From a comparative analysis of the different com-
putational approaches available for turbulent multiphase flows it is argued that the point–particle
approach is uniquely suited to address turbulent multiphase flows where the Stokes number, defined
as the ratio of particle time scale to Kolmogorov time scale ðsp=skÞ, is greater than 1. The Stokes number
estimate has been used to establish parameter range where point–particle approach is ideally suited. The
point–particle approach can be extended to handle ‘‘finite-sized” particles whose diameter approach that
of the smallest resolved eddies. However, new challenges arise in the implementation of Lagrangian–
Eulerian coupling between the particles and the carrier phase. An approach where the inter-phase
momentum and energy coupling can be separated into a deterministic and a stochastic contribution
has been suggested.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Point–particle approach has a long history (Riley and Paterson,
1974; Maxey, 1987; McLaughlin, 1989; Kallio and Reeks, 1989;
Elghobashi, 1991) and more recently it has become a powerful
and a useful tool in the computations of a variety of turbulent
multiphase flows (Squires and Eaton, 1991; Elghobashi and
Truesdell, 1992; Elghobashi and Truesdell, 1993; Wang and Maxey,
1993; Sundaram and Collins, 1997; Ferrante and Elghobashi, 2004).
It is useful to think of a globally-undisturbed ambient flow that
would exist in the absence of the particulate phase. A turbulent
globally-undisturbed ambient flow is characterized by a range
length and time scales from the Kolmogorov to the integral scale
eddies. The disturbance flow generated around the particles has a
range of scales and they are of the same order as the particles. The
point–particle approach is on solid theoretical footing if the size of
the suspended particles and the disturbance flow that they gener-
ate are much smaller than the scales of the undisturbed ambient
flow. Note that at sufficient mass loading the back coupling of par-
ticles to the carrier phase becomes important and the energy spec-
trum of the carrier phase is modified from the undisturbed state.

In this scenario depicted in Fig. 1a the spectrum of scales gener-
ated around the particles and in their wakes can be considered
microscale and it is well separated from the spectrum of the ambi-
ll rights reserved.
ent carrier phase turbulence, which can be considered macroscale.
This scale separation has been the basis of many point–particle
Direct Numerical Simulations (DNS) (Riley and Paterson, 1974;
Maxey, 1987; McLaughlin, 1989; Kallio and Reeks, 1989; Elghobashi,
1991; Squires and Eaton, 1991; Elghobashi and Truesdell, 1992;
Elghobashi and Truesdell, 1993; Wang and Maxey, 1993; Sundaram
and Collins, 1997; Ferrante and Elghobashi, 2004). These computa-
tions are DNS only at the macroscale. The microscale details of
the flow at the scale of the particles are not directly computed,
but taken into account in the simulations through inter-phase cou-
pling models.

Often, it is not possible to computationally resolve the entire
range of length and time scales even at the macroscale, and one
needs to resort to Large Eddy Simulations (LES). Point–particle
LES only requires that the particles are smaller than the smallest
resolved scale and thus, particles can be substantially bigger than
the Kolmogorov scale. This makes point–particle LES approach a
very attractive tool for investigating high Reynolds number turbu-
lent multiphase flows (Wang and Squires, 1997; Yamamoto et al.,
2001).

In an overview of the point–particle approach, Elghobashi
(1991, 1994) presented a regime map for the particle-laden turbu-
lent flow. On a two parameter space of particle volume fraction ð/Þ
and particle Stokes number (sp=sk – ratio of particle time scale to
Kolmogorov time scale) he classified dilute and dense suspensions
and provided guidelines for turbulence modulation. He compared
the strengths and weaknesses of the two-fluid approach and the
Lagrangian approach, both in the context of dilute and dense
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suspensions. Here we follow this line of argument and consider in
addition dusty gas and equilibrium Eulerian approaches (Ferry and
Balachandar, 2001; Rani and Balachandar, 2003). Over the past
decade fully resolved simulations of turbulent multiphase flows
with Oð100Þ to Oð1000Þ particles and bubbles have also become
possible (Pan and Banerjee, 1997; Kajishima et al., 2001; TenCate
et al., 2004; Lu and Tryggvason, 2006; Uhlmann, 2008). In this pa-
per we attempt to address the question, under what conditions
and what range of parameters does point–particle DNS and LES ap-
proaches are ideally suited? Our discussion will however be lim-
ited to cases of dilute suspension and thus will avoid issues
related to particle–particle interaction (four-way coupling). To-
wards this end, in Section 2 we first briefly review the different
computational approaches available for turbulent multiphase
flows. Then in Sections 3 and 4 we present simple dimensional
arguments to establish scaling relations for relative particle veloc-
ity and particle Reynolds number. In Section 5 we establish the
range of particle size and density ratio where point–particle DNS
and LES approaches become the method of choice. Finally in Sec-
tion 6 we discuss issues related to Lagrangian–Eulerian coupling
between the particles and the carrier phase flow.

2. Point–particle vs other approaches

In general the term point–particle approach refers to Eulerian
treatment of the carrier phase and Lagrangian treatment of the dis-
persed phase. A range of complementary computational ap-
proaches are available, each offering certain distinct advantages
and disadvantages. A regime map for particle-laden turbulent flow
with an insightful discussion on Eulerian (two-fluid) and Lagrang-
ian approaches for the particles is presented in Elghobashi (1994).
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Fig. 1. Schematic of the energy spectra of the undisturbed flow and that of the
particle-laden flow: (a) for the case of scale separation, when particles are much
smaller than the undisturbed flow scales, (b) when there is no scale separation
between the particle and the undisturbed flow.
Fig. 2 shows the different approaches and their applicability in the
context of this map. The relative particle size (d=g, ratio of particle
diameter to Kolmogorov scale) can be recast in terms of relative
particle time scale or Stokes number ðsp=skÞ. See Section 4 for a dis-
cussion on how nondimensional particle time and length scales are
related. In discussing the spectrum of available approaches, each
approach will be specifically compared with the prior approach
and their relative advantages and disadvantages will be high-
lighted. Here we restrict attention to only dilute suspensions and
thus issues pertaining to particle–particle interaction are avoided.
Computational approaches, such as discrete element methods, that
are appropriate to collision dominated flows will not be discussed.

2.1. Dusty gas approach

This powerful approach has been proposed and developed by
Saffman, Marble and others (Saffman, 1962; Marble, 1970) in the
context of particle-laden gas flows. In this approach it is assumed
that the particles are sufficiently small that they perfectly follow
the local carrier phase. In other words, in this limit the particle
velocity is just the same as the surrounding fluid. This allows the
particle-laden flow to be considered as a single fluid, whose den-
sity depends on the local mass fraction of suspended particles.
The biggest advantage of this approach is its simplicity. In addition
to mass, momentum and energy equations of the mixture only the
concentration (or equivalently the number density) equation for
the particulate phase needs to be solved. This approach is however
applicable for only particles of very small time scale.

2.2. Equilibrium Eulerian approach

This approach can be thought of as the Extended Dusty Gas Ap-
proach, in the sense that it retains the computational simplicity
and advantage of the dusty gas approach, but allows for particle
velocity to be different from that of the surrounding carrier phase.
In this approach it is assumed that the particles are sufficiently
small that their motion is dictated only by the surrounding fluid.
In other words, the particles are in equilibrium with the local car-
rier phase and their initial conditions have been forgotten. As
shown in Ferry and Balachandar (2001) and Ferry et al. (2003) un-
der equilibrium assumption particle velocity can be explicitly ex-
pressed as an expansion in terms of local fluid velocity and its
gradients with the particle Stokes number (ratio of particle time
scale to Kolmogorov scale) as the small parameter. For Stokes num-
ber less than unity even the first order correction to local fluid
velocity provides accurate representation of the slip velocity be-
tween the particle and the surrounding fluid.

The biggest advantage over the dusty gas approximation is that
the equilibrium Eulerian approach captures the relative particle
motion much more accurately and thereby enable important phe-
nomena, such as preferential particle accumulation (Squires and
Eaton, 1991) and turbophoresis (Reeks, 1983), to be accounted
for in the computation. A minor disadvantage over the dusty gas
approach is that particle velocity cannot be simply taken to be that
of local fluid, but it is given by an explicit algebraic equation
involving local fluid velocity and its gradients. Simulations using
this approach have been performed in turbulent flows (Ferry and
Balachandar, 2002; Rani and Balachandar, 2003). Also, the equilib-
rium approach has been extended to express the temperature of
the particle in terms of the local temperature of the fluid and its
gradients (Ferry and Balachandar, 2005).

2.3. Eulerian approach

In this two-fluid approach both the carrier and the dispersed
phases are treated as interpenetrating fluid media (Druzhinin
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Fig. 2. The different approaches to turbulent multiphase flow. Their applicability is
separated in terms of time scale ratio (Stokes number) or the length scale ratio,
which are in turn related to each other.
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and Elghobashi, 1999; Fevrier et al., 2005). As in the dusty gas and
the equilibrium Eulerian approaches, the particulate phase is trea-
ted as a continuum and the particle velocity is given a field repre-
sentation. While in the earlier two approaches only the
momentum and energy equations of the carrier phase needs to
be solved along with the concentration equation for the particulate
phase, in the two-fluid formulation additional momentum and en-
ergy equations for the particulate phase must be solved with
momentum and energy exchange between the phases taken into
account as source and sink terms.

The advantage of the two-fluid formulation over the equilib-
rium approximation is that the restriction on particle Stokes num-
ber ðsp=sk < 1Þ can be somewhat relaxed. Thus, the Eulerian
approach is applicable for particles that are larger than what could
be accurately considered using the equilibrium approximation.
Furthermore, there are situations when equilibrium assumption
is clearly violated. For example, in cases where the particles are in-
jected into the flow, even for particles of small Stokes number,
there may be a region around the injector where particle velocity
is controlled by the injection process. Only sufficiently away from
the injector equilibrium will be applicable and the particle velocity
can be accurately described in terms of local fluid velocity. Another
instance of non-equilibrium is particle–shock interaction. In this
case, there exists a region of relaxation downstream of the shock
where the particle velocity adjusts to the post-shock gas velocity.
Here again equilibrium approximation will be valid only suffi-
ciently away from the shock.

The above advantages however come at a cost. In the standard
Eulerian approach, for each particle size a set of mass, momentum
and energy (partial differential) equations must be solved along
with those of the carrier phase. While in the dusty gas and equilib-
rium Eulerian approaches only the mass (concentration) equation
needs to be solved for the particles. Thus, the Eulerian approach
is computationally expensive, and especially in the context of poly-
disperse systems, where a wide range of particle sizes need to be
considered, the standard Eulerian approach can be very expensive.
If the governing Eulerian equations are derived consistently using
the PDF approach, one can include particle size as one of phase
space variables. PDF based methods (Pope, 1985; Subramaniam,
2001; McGraw, 1997; Fox et al., 2008) have been advanced for
numerical simulation of the resulting equations.
2.4. Lagrangian point–particle approach

In contrast to the different Eulerian descriptions of the dis-
persed phase described above, here we retain the true Lagrangian
description of the particles by tracking their position, momentum
and energy with their equations of motion. In the Eulerian ap-
proach we use field representations of particle properties, such
as velocity and temperature, and this assumes existence of unique
values of these properties. In other words, all particles within a tiny
volume of fluid at any given point in space and time must have the
same velocity, temperature, etc. This requirement of uniqueness in
the Eulerian approach implicitly places restriction on the particle
size and on the Stokes number that can be considered. Ferry and
Balachandar (2001) showed that provided the particle time scale
is less than the inverse of the maximal compressional strain-rate
(their ratio can be thought of as a Stokes number) uniqueness
can be guaranteed. If uniqueness is violated, then either a probabi-
listic framework must be adopted or the Eulerian fields of particle
velocity, temperature, etc., must be thought of as ensemble aver-
ages. In the probabilistic framework, the phase space must be ex-
panded beyond the space and time variables to include velocity
and temperature information as well. Computations of turbulent
multiphase flows using this probabilistic framework is impractical.
Instead, if the Eulerian particle quantities represent ensemble aver-
ages, then the governing mass, momentum and energy equations
for the particles will require closure assumptions.

Thus, the biggest advantage of the Lagrangian approach over any
of the above Eulerian approaches is that there is no fundamental
limitation on the particle time scale (or Stokes number), since there
is no requirement of uniqueness. Furthermore, in the Lagrangian
approach the size of each particle is independent and thus polydis-
perse systems can be handled easily, while in the Eulerian ap-
proaches, particle size spectrum must be partitioned into finite
number of bins and the number of particles within each bin and
their velocities and temperature must be treated with a set of field
variables. On the other hand, coupling of the Lagrangian particles
back to the carrier phase poses interesting challenges. Typically
the hydrodynamic force on all the particles within a cell is added
and distributed to the neighboring grid points. There needs to be
sufficient number of particles within each cell in order to have a
smooth Eulerian representation of the feed-back force from the par-
ticles. Since cell-to-cell fluctuation in the number of particles goes
as inverse square root of the mean number of particles, even an
average of 100 particles per cell gives rise to 10% fluctuation. With
fewer number of particles per cell ad hoc smoothing of the feed-
back forcing is needed. Furthermore with fewer number of particles
per cell, the algorithm by which the feed-back is apportioned to the
neighboring cells is necessarily ad hoc and approximate. Thus, in
the Lagrangian point–particle approach the computational cost in-
creases, since a large number of particles must be tracked in order
to contain the level of statistical fluctuation. Even when the compu-
tation employs on average a large number of particles, due to pref-
erential accumulation, there are local regions of low particle
number density adversely affecting accurate representation of local
back coupling to the carrier phase. Also, as local number density de-
creases, the resulting increased grid-cell to grid-cell fluctuation
poses serious problem in the evaluation of statistics of the dis-
persed phase. One other disadvantage of the Lagrangian approach
is that it becomes exceedingly more expensive, due to restriction
in time step size, as the particle size decreases, e.g. in reacting flow
applications with evaporating droplets.

2.5. Fully-resolved approach

All the above methods, either explicitly or implicitly, make the
point–particle approximation, and thus are restricted to particles
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of size much smaller than the Kolmogorov scales, or the smallest
resolved eddies in case of LES. The point–particle assumption is
clear in the context of Lagrangian approach. In the context of the
Eulerian approaches the force and heat transfer laws that are used
to account for the momentum and energy coupling between the
phases are invariably based on the assumption that the particles
are much smaller than the flow scales.

For particles of size comparable or larger than the smallest
undisturbed flow scales the ultimate option is to perform fully re-
solved DNS, where all the scales of ambient turbulence, and the
flow scales introduced by the particles (the unsteady boundary lay-
ers and the wakes) are completely resolved. Such simulations have
been performed for a single particle (Bagchi and Balachandar,
2003; Bagchi and Balachandar, 2004; Merle et al., 2005; Burton
and Eaton, 2005; Zeng et al., 2008) to a collection of up to Oð100Þ
particles in turbulent flows (Pan and Banerjee, 1997; Kajishima
et al., 2001; TenCate et al., 2004; Lu and Tryggvason, 2006; Uhl-
mann, 2008). Most applications typically involve far more particles
in the flow than few thousand, and fully-resolved DNS of such sys-
tems is out of question in the foreseeable future.

3. Relative velocity

3.1. General analysis

Here we obtain a simple estimate of the relative velocity between
the particle and the surrounding fluid in a turbulent flow. A prelimin-
ary discussion along this line was presented in an earlier paper
(Balachandar, 2003). Let L and g denote the largest (integral) and
the smallest (Kolmogorov) scales of the turbulent flow and d be
the diameter of the particles. The corresponding time and velocity
scales of the L-size eddies are given by sL ¼ L2=3=�1=3 and uL ¼
ð�LÞ1=3 and those of the Kolmogorov eddies are given by sk ¼
g2=3=�1=3 and uk ¼ ð�gÞ1=3, where � is the dissipation rate that is con-
sidered to be set by the energy containing large eddies and main-
tained through the inertial range. The particle time scale is given by

sp ¼
ð2qþ 1Þ

36
d2

m
1

/ðReÞ ; ð1Þ

where m is the kinematic viscosity of the surrounding fluid,
q ¼ qp=qf is the particle-to-fluid density ratio and / is the finite
Reynolds number correction to Stokes drag, which for solid particles
can be taken to be /ðReÞ ¼ 1þ 0:15Re0:687 (Clift et al., 1978). Similar
finite Reynolds number corrections for bubbles has been presented
by Mei (1994). Here the Reynolds number is based on particle diam-
eter and the relative velocity between the particle and the
surrounding fluid: Re ¼ ju� v jd=m.

In the context of DNS of the carrier phase turbulence, as discussed
above, we are limited to small particles that satisfy L� g� d. In
estimating the relative velocity we make use of the equilibrium Eule-
rian approximation for the particle velocity (Ferry and Balachandar,
2001; Ferry et al., 2003) as given by ðu� vÞ � spð1� bÞDu=Dt, where
b ¼ 3=ð2qþ 1Þ is a parameter associated with density ratio and
Du=Dt is fluid acceleration seen by the particle. Note b is bounded
to be Oð1Þ, with b ¼ 0 for heavy particles, b ¼ 1 for neutrally buoyant
particles and b ¼ 3 for bubbles. As discussed in (Ferry and
Balachandar, 2001; Ferry et al., 2003) a simple interpretation for
the above relation is that under equilibrium particle motion the
relative velocity is dictated by particle’s inability to respond to local
fluid acceleration just as a fluid element. It must be stressed that here
equilibrium does not imply that the particles move with the fluid. It
implies that the particle velocity depends only on the surrounding
fluid and that the effects of particle’s initial conditions have decayed
rapidly. As a result, in an accelerating flow a heavy particle ðb ¼ 0Þ
will lag the fluid, while a bubble ðb ¼ 3Þwill lead the fluid.
The total acceleration derives contributions from the entire
spectrum of eddies and that due to the l-size eddy can be estimated
from the inertial scaling as ðDu=DtÞl ¼ ul=sl, where ul ¼ ð�lÞ1=3 and
sl ¼ l2=3

=�1=3. By substituting in the equilibrium Eulerian approxi-
mation for the relative velocity it can be see that the relative veloc-
ity induced by the l-size eddy can be expressed as

ðu� vÞl
ul

�
ð1� bÞ sp

sl
if sp < sl;

ð1� bÞ if sp > sl:

(
ð2Þ

In the above it is assumed that for small particles the relative veloc-
ity due to the l-size eddy increases with sp as given by the equilib-
rium approximation. However, for larger particles of time scale
greater than sl relative velocity will be capped at ð1� bÞul (note
equilibrium approximation is accurate only for sp=sl < 1). The
above simplified model is sufficient for the present discussion. A
slightly improved approximation is presented in the Appendix.

3.2. Three different regimes

For each particle size (and corresponding particle time scale), the
relative velocity due to the different eddies from the Kolmogorov to
the integral scale can be estimated and the largest contribution can
be taken to be the characteristic relative velocity for the particle. In
doing so, three different regimes of particle size can be identified:

(1) In regime-I particles are sufficiently small that their time
scale is smaller than the Kolmogorov time scale. Since the
time scale of eddies increases as two-third power of eddy size,
the time scale of particles in regime-I is guaranteed to be less than
all carrier flow time scales. It can be readily obtained that in
regime-I the relative velocity of particles is controlled by the
Kolmogorov eddies and we have

Regime� I ðsp < skÞ :
ðu� vÞ

uk
� sp

sk
ð1� bÞ: ð3Þ

The above estimate of relative velocity can be rearranged to
obtain

ðu� vÞ
uk

� ð2qþ 1Þ
36

ð1� bÞ
/ðReÞ

d
g

� �2

: ð4Þ

It will be shown below that particle Reynolds number in re-
gime-I is constrained to be small and Stokes drag applies (i.e.,
/ � 1). The dependence of relative velocity on density ratio and
relative particle size becomes clear.

(2) Regime-II is comprised of larger particles, whose time scale
exceeds the Kolmogorov time scale, but is less than sL. For particles
in this regime, there exist an eddy of size l� ¼ s3=2

p �1=2, which satis-
fies the condition g < l� < L, whose time scale matches the particle
time scale. Such particles are too big to fully respond to eddies of
size smaller than l� and the maximum relative velocity will be dic-
tated by the l�-size eddy, i.e., ðu� vÞl� � ð1� bÞð�l�Þ1=3 ¼ ð1� bÞ
ð�spÞ1=2. Now consider the effect of eddies of size l1 > l�. Since their
time scale is larger than that of the particle, the relative velocity
due to an eddy of size l1 can be estimated using the equilibrium
Eulerian approximation as spð1� bÞðDu=DtÞl1 � spð1� bÞ�2=3=l1=3

1 .
The ratio of estimated relative velocity due to the l1-eddy and
the smaller l�-eddy is given by

sp
�2=3

l1=3
1

1

ð�spÞ1=2 ¼
l�
l1

� �1=3

< 1: ð5Þ

It is thus established that

Regime� II ðsk < sp < sLÞ :

ðu� vÞ � ð1� bÞð�spÞ1=2 ) ðu� vÞ
uk

� ð1� bÞ sp

sk

� �1=2

: ð6Þ
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(3) Similar arguments can used for regime-III particles, whose
time scale exceeds the time scale of the largest eddy ðsLÞ. The rel-
ative velocity for the regime-III particles is capped by the velocity
scale of the L-sized eddies. The relative velocity is then given by

Regime� III ðsL < spÞ :

ðu� vÞ � ð1� bÞð�LÞ1=3 ) ðu� vÞ
uk

� ð1� bÞ L
g

� �1=3

: ð7Þ

The relative velocity normalized by the Kolmogorov velocity
ððu� vÞ=ukÞ in the three regimes are plotted as a function of
sp=sk in Fig. 3, and the different power-law behaviors in the differ-
ent regimes are clear. Note that in the above estimation, equilib-
rium velocity is employed only for sufficiently small particles
whose time scale is smaller than the eddy. For larger particles rel-
ative velocity is capped by the velocity scale of the eddy, which is
given by turbulence scaling.

3.3. Relative velocity scaling in LES

We can now investigate the relative velocity scaling in the con-
text of LES of carrier phase turbulence. Let n > g be the cut-off
length scale. Only eddies of size larger than the cut-off are com-
puted in LES and scales below the cut-off are considered subgrid
and as a result modeled. The arguments presented above in the
context of DNS of carrier phase can be extended to the case of
LES as well. However, the smallest resolved length scale ðnÞ now
plays a role similar to the role Kolmogorov scale ðgÞ played in
the above analysis. We can identify regime-I0 where the particle
time scale is less than the time scale of the smallest resolved eddy
ðsn ¼ n2=3=�1=3Þ. In this regime the relative velocity is dictated by
the smallest resolved eddy and is given by

LES Regime� I0 ðsp < snÞ :
ðu� vÞ

uk
� ð1� bÞ sp

sk

g
n

� �1=3

: ð8Þ

This regime, which is relevant to LES, is also depicted in Fig. 3
and as can be expected it covers all of DNS regime-I and part of re-
gime-II. In this LES regime-I0 the relative velocity induced by the
resolved eddies is smaller than what can be expected with the
presence of the subgrid scales. For particles whose time scale is lar-
ger than sn, the dominant eddy which controls the relative velocity
is being computed as part of LES and as a result the relative veloc-
ity scaling remains the same as in DNS (same as given in Eqs. (6)
and (7)).

In LES, in computing the Lagrangian motion of particles, in addi-
tion to the resolved scale carrier flow velocity seen by the particle,
a stochastic component that accounts for the effect of the unre-
solved subgrid scales is also included (Minier et al., 2004; Shotor-
ban and Mashayek, 2006; Berrouk et al., 2007). If appropriately
accounted, the effect of the subgrid should bring the relative veloc-
ity scaling back to the DNS level and as a result the estimates of rel-
ative velocity given in (3), (6) and (7) are applicable even in LES.
The important difference is that the stringent point–particle DNS
requirement that d� g is relaxed and replaced by d� n. The
above discussion clarifies the role of stochastic contribution to
the particle motion. For small particles of time scale less than sn

the stochastic contribution will dominate and dictate the magni-
tude of relative velocity. Whereas for larger particles the stochastic
contribution to relative velocity will be sub-dominant to the deter-
ministic contribution arising from the resolved scale eddies. Never-
theless, for all particles the stochastic contribution is important in
order to properly account for the role of subgrid scales in particle
dispersion.

3.4. Role of settling velocity

In the above discussion the effect of gravity and particle settling
has not been factored. Particle settling velocity ðVTÞ is linearly re-
lated to particle time scale as VT ¼ spgð1� bÞ, where g is accelera-
tion due to gravity. From which nondimensional particle settling
velocity can be obtained as

VT

uk
¼ sp

sk
ð1� bÞ g

ak
; ð9Þ

where ak ¼ �2=3=g1=3 is Kolmogorov acceleration. The two different
situations of ðg=akÞ being greater than one and less than one are de-
picted in Fig. 3. It can be seen that provided ðg=akÞ > 1 gravitational
settling will dictate the relative velocity of all particles. On the other
hand, if ðg=akÞ < 1 for a range of small particle size their settling
velocity will be smaller than relative velocity induced by the turbu-
lent eddies. But there exist a particle size (or equivalently a particle
time scale) beyond which settling velocity will exceed relative
velocity due to turbulence.

A more quantitative estimate can be obtained with the follow-
ing definition of Kolmogorov acceleration in terms of kinematic
viscosity of the fluid: ak ¼ m2=g3. Consider the following typical
cases. In water at around room temperature ðm � 10�6 m2=sÞ, if
Kolmogorov scale g > 47 lm, then in such turbulence gravitational
settling will dominate the effect of turbulent eddies in determining
relative velocity. The above result is independent of particle-to-
fluid density ratio and therefore is applicable for both bubbles
and heavy suspended particles. In air at around room temperature
ðm � 1:5� 10�5Þ provided g > 284lm gravitational settling will al-
ways dictate relative velocity. Note that in all these cases the
importance of gravitational settling compared to turbulence is
determined by the Kolmogorov scale and is independent of the
Reynolds number of the carrier phase turbulence.
4. Particle Reynolds number

Here we use the relative velocity scaling obtained in the previ-
ous section to obtain the particle Reynolds number scaling. Again
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the three different regimes are of relevance. The relative velocity in
the different regimes (Eqs. (3), (6), and (7)) can be used to obtain
equations for particle Reynolds number and after algebraic manip-
ulation we get

Re/ðReÞ ¼ jq� 1j
18

d
g

� �3

Regime-I ð10Þ

Re
ffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðReÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2qþ 1

s
jq� 1j

3
d
g

� �2

Regime-II ð11Þ

Re ¼ 2jq� 1j
2qþ 1

d
g

L
g

� �1=3

Regime-III: ð12Þ

The domain of validity of the three regimes can now be recasted
entirely in terms of particle-to-fluid density ratio and nondimen-
sional particle diameter. In order to do so first we combine (10)
with the boundary between regime-I and regime-II (i.e., sp ¼ sk)
to obtain

ReI;II ¼
2jq� 1j
2qþ 1

d
g
: ð13Þ

This indicates that particle Reynolds number in regime-I is
much smaller than unity. Similarly, we can combine (11) with
sp ¼ sL to obtain the following Reynolds number for the boundary
between regime-II and regime-III

ReII;III ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jq� 1j
2qþ 1

s
d
g

L
g

� �1=3

: ð14Þ

Using the above relations the three different regimes can be
uniquely defined in terms of q and d=g as

Regime-I :
2qþ 1

36

� �
d
g

� �2

< /ðReI;IIÞ ð15Þ

Regime-II : /ðReI;IIÞ <
2qþ 1

36

� �
d
g

� �2

< /ðReII;IIIÞ
L
g

� �2=3

ð16Þ

Regime-III : /ðReII;IIIÞ
L
g

� �2=3

<
2qþ 1

36

� �
d
g

� �2

: ð17Þ
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Fig. 4. The plot of particle Reynolds number vs nondimensional particle size, for
varying density ratio and turbulence intensity given in terms of ratio of integral to
Kolmogorov length scale. In each plot the boundary between the different regimes
is marked by a vertical bar.
Note that in DNS point–particle approach ReI;II will be less than
one and as a result we have the approximation /ðReI;IIÞ � 1. In the
context of LES, however, the particle diameter can exceed the Kol-
mogorov scale and the regime boundaries must be obtained corre-
sponding to finite Re.

Fig. 4 presents Reynolds number plotted as a function of d=g for
different values of density ratio and carrier phase turbulence Rey-
nolds number. Note that L=g ¼ ðReLÞ3=4 and the ratio of integral to
Kolmogorov length scale is related to turbulence Reynolds number.
Under equilibrium assumption neutrally buoyant particles ðq ¼ 1Þ
move with the fluid and as a result their relative velocity and Rey-
nolds number are zero. From (10) it can be seen that in regime-I
the Reynolds number of q ¼ 2 particles and q ¼ 0 bubbles is the
same. In regime-II Eq. (11) shows that the Reynolds number of
q ¼ 4 particles is the same as that of bubbles. In regime-III accord-
ing to (12) the Reynolds number of bubbles will be the largest and
larger than even the heaviest particles. These behaviors can be ver-
ified in Fig. 4. In regime-I the Reynolds number of q ¼ 2:5 particles
is slightly higher than that of bubbles, while in regime-II the trend
reverses. In both these regimes with further increase in density ra-
tio particle Reynolds number substantially increases.

If we restrict to d=g < 0:1 then particle Reynolds number re-
mains quite small even for very heavy particles. In case of large
density ratio ðq � 1000Þ as d approaches Kolmogorov scale, parti-
cle Reynolds number increases above 1. In case of bubbles only
in the context of LES, as the particle diameter increases substan-
tially above the Kolmogorov scale, Re increase above 1. In Fig. 4
the boundary between the different regimes is marked by vertical
bars. Bubbles and q ¼ 2:5 particles, even as large as d � 100g, are
still in regime-II. Over the range of d=g shown in Fig. 4 only the
heavy particles have entered regime-III. In regimes-I and II particle
Reynolds number is independent of turbulence intensity (or L=g).
Only in regime-III Re depends on L=g and as can be expected
with increasing turbulence intensity particle Reynolds number
increases.
5. Point–particle approach – method of choice

From the comparison of the different approaches presented in
Section 2 it can be argued that the point–particle Lagrangian ap-
proach is uniquely suited in problems where the particle time
scale is larger than the Kolmogorov time scale (i.e., sp=sk > 1).
The point–particle approach is clearly applicable even when
sp=sk < 1, however, when this ratio (Stokes number) is small the
equilibrium Eulerian approach offers a more computationally effi-
cient alternative. The accuracy of the equilibrium approximation
has been tested in a variety of turbulent flows and it appears that
provided the Stokes number ðsp=skÞ is less than about 0.2 fairly
accurate results are obtained with the equilibrium Eulerian ap-
proach (Ferry and Balachandar, 2002; Rani and Balachandar,
2003; Shotorban and Balachandar, 2006). In the limit sp=sk � 1
one may even simply use the dusty gas approximation. For the
case 0:2 < sp=sk � Oð1Þ both the Eulerian two-fluid formulation
and the Lagrangian point–particle approach become comparable.
For larger particles of sp=sk > 1, since uniqueness of particle veloc-
ity cannot be guaranteed, the Lagrangian approach offers an
advantage.

The point–particle approach is on sound theoretical footing in
the limit d� g. However, in problems involving millions of parti-
cles of size comparable to the Kolmogorov scale, the point–particle
approach may be the only viable option provided sp=sk > 1, since a
fully-resolved simulation is not an option. The point–particle ap-
proach in such cases where the particles are comparable to the Kol-
mogorov scale can be appropriately termed ‘‘finite-size point–
particle approach”. As will be seen below inter-phase momentum
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and energy coupling becomes complicated as the particle size in-
creases and approaches the Kolmogorov scale and unavoidable
empiricism needs to be introduced in their representation. Never-
theless, from (1) it can be seen that

sp

sk
¼ 2qþ 1

36
1

/ðReÞ
d
g

� �2

: ð18Þ

The particle Reynolds number dependence obtained in Section

4 can now be used to express the Stokes number entirely in terms
of d=g and density ratio. In Fig. 5a sp=sk is plotted against d=g on
log–log scale for different combinations of q and L=g. If we restrict
attention to d=g < 0:1, even for the case of heavy particles in gas
ðq � Oð103ÞÞ, the time scale ratio is generally small and the
point–particle Lagrangian approach is barely the method of choice.
However, if we relax the particle size restriction and consider
d � OðgÞ, then for heavier-than-fluid particles the time scale ratio
can increase above unity and point–particle approach becomes
more appropriate. The above analysis is pertinent to the case of
DNS of carrier phase. From Fig. 4 it can be seen that for small values
of d=g particle Reynolds number is generally small. Accordingly
/ðReÞ � 1 and as a result the time scale ratio simply shows a qua-
dratic dependence on d=g.

In case of LES of carrier phase, the point–particle approach be-
comes the method of choice provided the particle time scale is lar-
ger than the time scale of the smallest resolved eddy (i.e., sp > sn).
The time scale ratio can now be expressed as

sp

sn
¼ 2qþ 1

36
1

/ðReÞ
d
n

� �2 n
g

� �4=3

: ð19Þ

In Fig. 5b sp=sn is plotted against d=g on log–log scale for differ-
ent combinations of q and L=g, for the particular case where the
LES filter is 100 times the Kolmogorov scale. Thus, even if we limit
to particle size an order of magnitude smaller than the smallest
resolved eddy (i.e., d=n � 0:1), provided the Reynolds number of
carrier phase turbulence is sufficiently large and accordingly the
cut-off length scale much larger than Kolmogorov scale
ðn=g� 1Þ, the time scale ratio can be greater than 1 for a wide
range of density ratio to make point–particle approach the method
of choice. Again point–particle LES approach can be pushed to con-
sider larger particles of size comparable to the filter size (i.e.,
d � n). In which case even for bubbly flows ðq! 0Þ the Lagrangian
point–particle approach may be the only viable option. Note that in
Fig. 5, even for the q ¼ 0 bubble case, the finite Re correction ap-
plied is corresponding to that of rigid sphere. Instead /ðReÞ pro-
posed by Mei (1994) for bubbles can be used, but the
corresponding change is minor.
6. Inter-phase coupling

6.1. Point–particle DNS

Momentum coupling between the phases is enforced in
terms of drag and lift forces between the individual particles
and the surrounding fluid. These forces that act on the particles
are used in solving the Lagrangian equations of motion. The
forces are also back coupled to the carrier phase momentum
equation. Although this sounds simple enough, there are subtle
issues that complicate this Eulerian–Lagrangian coupling be-
tween phases.

If the Reynolds number, based on particle diameter and relative
velocity with the ambient flow, is sufficiently small, reliable ana-
lytical expressions for drag and lift forces exist (Clift et al., 1978).
At finite Reynolds numbers the drag and lift forces are given by
empirical correlations. Furthermore, additional forces such as
added-mass, Bassett history and Faxen correction can become
important for finite-sized particles. Irrespective, the analytical
expressions and empirical correlations are in terms of the undis-
turbed ambient carrier phase. For example, the standard drag cor-
relation is given in terms of the undisturbed carrier phase velocity
as seen by the particle. Undisturbed carrier phase velocity for each
particle technically requires the knowledge of the flow that would
have existed in its absence. Note that in this sense the undisturbed
carrier phase velocity for each particle is different from the glob-
ally-undisturbed velocity discussed at the very beginning in the
introduction. While the globally-undisturbed velocity is a single
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phase flow, local undisturbed flow for each particle will include the
effect of all far away particles. Nevertheless, as long as the particle
and the disturbance flow it locally generates are substantially
smaller than the Kolmogorov scale, the separation of undisturbed
and disturbance flows at the macro and microscale is feasible
(see Fig. 1a). And the undisturbed fluid velocity seen by the particle
can be taken to be the carrier phase velocity at the grid scale. Fur-
thermore, for such small particles, the effect of undisturbed flow
gradients at the macroscale will be substantially weak and the
force on the particle can be reliably taken to be given by the stan-
dard drag correlation.

The above considerations equally apply to thermal energy ex-
change between the particles and the carrier phase. For sufficiently
small particles, energy exchange can be accurately predicted using
standard heat transfer correlations, where again the temperature
of the undisturbed ambient fluid can be taken to be the carrier
phase temperature at the grid scale.

As the particles approach the scales of the undisturbed flow,
there will not be any scale separation between the macroscale tur-
bulence and the microscale flow features around the particles. The
energy spectra is illustrated by the dash line in Fig. 1b. This situa-
tion significantly complicates the momentum and energy ex-
change between the particles and the carrier phase that enters in
the governing equations as inter-phase force and heat transfer
terms. As we extend the point–particle approach to ‘‘finite-size”
particles, three challenges arise. First, the undisturbed flow seen
by the particles cannot be anymore taken to be the computed car-
rier phase velocity at the grid scale. Although the definition of
undisturbed flow as one that would exist in the absence of the par-
ticle still remains, its evaluation is computationally prohibitive,
since this would require many additional simulations with one
particle removed in each simulation. Second, since the undisturbed
carrier phase velocity now varies over the size of the particle, its
characterization in terms of only the ambient fluid velocity at the
center of the particle is not sufficient. The undisturbed velocity
seen by the particle requires a more complex description. Finally,
even if the undisturbed flow is known and characterized to great
precision, its effect on the particle in terms of force and heat trans-
fer have not been accurately correlated for application in the
point–particle context, especially at finite Re. These difficulties of
course become unimportant as the particle size becomes much
smaller than the smallest eddies.

Based on current understanding, the best possible approach to
evaluating the force on a finite-size point–particle (whose diameter
is comparable to the carrier flow scales) is to consider a determin-
istic contribution and a stochastic contribution. The deterministic
contribution to the force on the particle will account for the effect
of the carrier phase at scales much larger than the particle. For
the deterministic contribution one can use, for example, the stan-
dard drag correlation, with the large scale’s contribution to the car-
rier flow at the particle location as the fluid velocity seen by the
particle. The contribution from the smaller eddies of size compara-
ble to the particle to the force on the particle must be accounted in a
different way. Since the undisturbed flow at this scale and its con-
tribution to force are hard to establish in a deterministic fashion, it
is best to represent the effect of the smaller eddies as a stochastic
contribution. In other words, even if the entire range of carrier flow
scales are computed directly, in case of finite-size point–particles it
is convenient to filter the carrier phase into large-than-particle
scales and smaller scales. The former will contribute to the deter-
ministic force and the later to the stochastic component.

6.2. Point–particle LES

In case of LES of carrier phase, let us first consider the case of
particles being an order of magnitude or more smaller than the
smallest resolved scales. The point–particle LES approach is then
on solid footing. The undisturbed ambient resolved-scale flow
can be taken to be the LES carrier phase velocity at the particle
location and its contribution to force can be estimated using the
standard drag law. The unresolved subgrid scale will also influence
particle motion and must be taken into account with a stochastic
contribution. Stochastic Langevin type models have been devel-
oped to account for the influence of unresolved subgrid scales on
particle motion (Minier et al., 2004; Shotorban and Balachandar,
2006; Berrouk et al., 2007).

If the particles under consideration are large and of comparable
size to the smallest resolved eddies, then difficulties similar to
those outlined for DNS of carrier phase arise. Again, it is appropri-
ate to filter the resolved scales into substantially larger-than-parti-
cle scales and smaller resolved scales. The former will contribute to
the deterministic force, while the later can be combined with the
unresolved scales and accounted through the stochastic
contribution.

The effect of particles on LES closure of carrier phase equations
must also be considered. If the particles are much smaller than the
smallest resolved scale (as depicted in Fig. 1b), then a conventional
single phase LES closure with back coupling of forces from the par-
ticles can be expected to be sufficient. However, if point–particle
LES approach is pushed to allow the LES cut-off length scale to fall
within the range of disturbance flow due to the particles, it is not
clear if and how the subgrid scale closure must be modified to ac-
count for the overlap.

The effect of particle Reynolds number must be considered as
well. As can be seen from Fig. 4, in the context of DNS even for parti-
cles as large as the Kolmogorov scale their Reynolds number remains
low. In the context of LES the particle Reynolds number can be much
larger. In a steady uniform ambient flow for Re > 280 the wake be-
comes unsteady with periodic vortex shedding and correspondingly
the force acting on the particle shows periodic fluctuation. In a tur-
bulent flow the critical Reynolds number for onset of vortex shed-
ding decreases (Bagchi and Balachandar, 2003). At even higher
Reynolds numbers the wake dynamics and the force acting on the
particle become chaotic. Thus, in cases where particle Reynolds
number exceed few hundred, the effect of vortex shedding on force
fluctuation must also be accounted as added contribution to the sto-
chastic component of the particle force.

Finally, the effect of particle volume fraction can be consid-
ered. So far we have assumed that particle volume fraction to
be quite small. Here it must be stressed that even if mean vol-
ume fraction is quite small, due to preferential accumulation,
there can be local regions where volume fraction can build up
to large values. With increasing volume fraction, particle–particle
interaction becomes significant and this inter-particle interaction
must be taken into account in the momentum and energy ex-
change between phases.
7. Summary

Simple dimensional arguments are used in establishing three
different regimes where relative velocity between the particle
and the carrier phase are differently controlled. In regime-I parti-
cles are sufficiently small that the relative velocity is dictated by
the Kolmogorov eddies. In regime-II particles are larger and their
relative velocity is controlled by an inertial range eddy whose time
scale matches that of the particle. In regime-III the particles are
large that their time scale exceeds that of the integral scale eddies
and in this regime relative velocity is dictated by the integral scale
eddies. The relative velocity scaling is used to subsequently obtain
estimates of particle Reynolds number and Stokes number in terms
of nondimensional particle size ðd=gÞ and density ratio.
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From a comparative analysis of the different computational ap-
proaches available for turbulent multiphase flows it is argued that
the point–particle approach is uniquely suited to address turbulent
multiphase flows where the Stokes number, defined as the ratio of
particle time scale to Kolmogorov time scale ðsp=skÞ, is greater than
1. The point–particle approach is clearly applicable even when
sp=sk < 1, however, when Stokes number is smaller than about 0.2
the equilibrium Eulerian approach offers a more computationally
efficient alternative. In the limit sp=sk � 1 one may even simply
use the dusty gas approximation. For the case 0:2 < sp=sk � Oð1Þ
both the Eulerian two-fluid formulation and the Lagrangian point–
particle approach become comparable. In particular for larger parti-
cles of sp=sk > 1, since uniqueness of particle velocity cannot be
guaranteed, Lagrangian approach offers a definite advantage over
the Eulerian approaches.

The Stokes number estimate has been used to recast the
above arguments and establish parameter range where point–
particle approach is ideally suited. If we restrict attention to
only particles of size an order of magnitude or more smaller
than the smallest computed eddies, in the context of DNS of
carrier phase, the point–particle approach perhaps makes sense
only for very heavy particles. For lighter particles and bubbles,
their Stokes number will be so low that computationally more
efficient Dusty gas or equilibrium Eulerian approaches should
be sufficient. In the contact of LES of carrier phase, the point–
particle approach presents unique advantage over Eulerian ap-
proaches for substantially heavier-than-fluid particles and be-
comes comparable to the two-fluids approach in case of near-
neutrally buoyant particles. If we push the applicability of the
point–particle approach to larger particles of size that approach
the smallest resolved eddies, then point–particle approach pre-
sents unique opportunity for a wider range of density ratio,
including lighter-than-fluid bubbles. However, as we extend
the point–particle approach to ‘‘finite-size” particles new chal-
lenges arise in the implementation of Lagrangian–Eulerian cou-
pling between the particles and the carrier phase. An approach
where the inter-phase momentum and energy coupling can be
separated into a deterministic and a stochastic contribution
has been suggested.

A. More accurate estimation relative velocity

Consider a one-dimensional oscillatory flow u ¼ Realfu0eixtg.
The particle motion in given by

dv
dt
¼ u� v

sp
þ b

Du
Dt

: ð20Þ

Here d=dt is total derivative following the particle and D=Dt is
that following the fluid element. The resulting solution can be used
to evaluate the relative velocity between the particle and the flow.
In particular, if we consider the oscillatory flow to correspond to an
l-size eddy with u0 � ul and x � 1=sl the relative velocity due to
the l-size eddy can be written as

ðu� vÞl
ul

¼ ð1� bÞ sp=sl

½1þ ðsp=slÞ2	1=2 ; ð21Þ

which can be compared with (2) and verified that the equilibrium
Eulerian approach provides an adequate approximation to the rela-
tive velocity. The above more refined estimate of the l-size eddy’s
effect on relative velocity can be used in a manner similar to that
outlined in Section 3. Again three different regimes can be identi-
fied. Interestingly the regime boundaries remain the same as those
given in (3), (6) and (7). The relative velocity in the three regimes
can now be expressed as
�v ¼

ukð1�bÞðsp=skÞ
½1þðsp=skÞ2 	1=2 for sp < sk

1�bffiffi
2
p ulð�spÞ1=2 for sk < sp < sL

ð1�bÞð�LÞ1=3ðsp=sLÞ
½1þðsp=sLÞ2 	1=2 forsL < sp

8>>>><
>>>>:

ð22Þ

The above expression for relative velocity can be compared with
those given in (3), (6) and (7) and verified that the general scaling
arguments presented here are robust.
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